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Abstract. The equation governing the propagation of spiral beams in a non-linear medium 
is analysed. It is shown that, taking into account the saturation effect, spiral beams have 
a tube-like structure with a periodicity along the axis of a non-linear autoguide. A critical 
power is found which it is necessary to exceed in order to give rise to the indicated 
autoguided regime of the beam propagation. Furthermore, in this work a strict self-similar 
solution is obtained of a non-linear Schrodinger-type equation that describes the collapse 
of spiral beams, and a new class of self-similar solutions is found for the case of spherical 
symmetry. 

1. Introduction 

It is well known that the non-linear refraction of rays in non-linear media results in 
self-focusing, self-trapping or defocusing of beams under appropriate conditions [ 1-61. 
In particular, the autoguided propagation (self-trapping) of light beams takes place 
when the diffractional spread is compensated by the compression due to the non- 
linearity of dielectric permittivity. Many aspects of the theory of these phenomena 
are of interest, not only for optical applications. Indeed, there is a formal similarity 
between the equations of self-focusing theory and the Ginzburg-Landau equation, 
non-linear Schrodinger equation, etc, describing different phenomena. Hence, the 
results obtained in this domain acquire a certain generality. 

The feasibility of forming new autoguided beams, called ‘spiral’ beams, with a 
non-zero topological charge has been predicted [7] and more recently confirmed [8, 91 
by computational experiment. The data from the computer experiment show that these 
beams are stable. The beams are characterised by a spiral space-time phase structure 
and a ring-shaped radial distribution of the intensity (or the field modulus), i.e. their 
3~ view is tube-like (the intensity on the beam axis strictly equals zero). Note that the 
tube-like beams which are not autoguides have been considered elsewhere [ 10,111. 

In the present paper the space-time structure of spiral beams is studied on the 
basis of a numerical solution of the equation describing the behaviour of the spiral 
beams in a non-linear medium. It is shown that a spiral autoguided regime is feasible 
when a number of conditions, one of which is availability of saturation, are satisfied. 
In particular, a critical power is obtained, the excess of which is required to give rise 
to the above-mentioned regime. It is found that under no-saturation conditions a 
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collapse is possible, with the tube-like beam structure preserved. Contrary to the well 
known works on self-focusing, we have obtained an exact self-similar solution describ- 
ing the collapse in the case of beams with an arbitrary topological charge. The results 
obtained hold true for ‘ordinary’ self-focusing when the topological charge equals zero. 
The self-similar solution found is consistent, to a high degree of accuracy, with the 
results of computer simulations. 

2. An equation for the electric field of spiral beams in a non-linear medium 

The propagation of a light beam in a non-linear medium is governed by the wave 
equation 

E = Re{Eo exp[i(wt - K z ) ] }  (1) 
1 a2 
c2 a t  

AE -- 7 ( E  (Eo) E )  = 0 

where the dielectric permittivity may be written in the form 

E(EO)=Eo+E2(EOEO*)+E4(EOE~)2+.  . . . (2) 

The peculiarity of the problem formulated in [7] is that the phase of the beam incident 
on the medium is dependent on the polar angle q and may, in general, rotate at some 
angular rate C l :  

Eol,=o= El exp[iqb(r, q - l l t ) ] .  (3) 
In the slowly varying amplitude approximation equation ( l) ,  which is written in the 
cylindrical coordinate system with regard to the terms of the second and fourth order 
in (2), takes the form 

+ K;[E2(EoE$) -I- E~(EOEO*)~]EO (4) 

where KO = w / c ,  K = &ICo. Taking into account equation (3) and the field periodicity 
relative to the spatial rotations, let us seek a solution of equation (4) as follows [ 7 ] :  

(5) Eo(r, z, q ;  t )  = ngO(r ,  z )  exp[-im(q -lit)] m = *l, *2,. . . . 
Now, it is convenient to introduce a new function, 

go( r, z )  = +( r, z )  exp( - i m p )  

where q = & C l /  c. Setting qo = ll/ c and taking into account the inequality KO >> I mqol, 
with (5) and ( 6 )  substituted into (4), we obtain a non-linear stationary equation for 
* ( r ,  z ) :  

It can be shown that a limited solution of equation ( 7 )  has asymptotics I+ l -  r i m ’  as 
r + 0. For this reason, the boundary condition for equation ( 7 ) ,  for m = 0, *2, +3, . . . , 
may be written as 
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Obviously, for m = *1 the derivative a $ / a r  has a singularity at r = 0, and therefore, 
in this case, another boundary condition should be used: 

*1,=0= * o ( r )  $ l r = O = O  lim $( r, z) = 0. ( 9 )  
r - o c  

In this paper, the case considered is where s 0. Introducing dimensionless 
variables r ‘=  r / R o ,  z’= z/2KRi,  where Ro is a characteristic radius of the beam, and 
a dimensionless complex function 

> 0, 

U = U (  r ’ ,  z’) = &‘R,Ko$( r, z) (10) 

equation (7)  is transformed to 

where A = - E ~ / ( E ~ R ~ K ~ ) ~ .  
Boundary conditions for the above equation may be expressed as follows: 

U I ~ , = ~ =  uo(r’)  d”1 = o  T’“ lim u=O m = 0, *2, *3, . . . (12) ar’ r ’ = O  

U I , . = ~ =  uo(r’)  U l r L O =  0 r’-+cc lim u = O  m = *l .  (13) 

The constants of motion I ,  and I2  are important characteristics: 

I ,  = lom luI2r’ dr’ 

It can be readily shown that 

d 
- I,=O. 

d 
- I ,=O 
dz dz 

As will be shown below, the nature of the solution of equation (1 1) is mainly dependent 
on I , .  

It should also be noted that the phase structure of the beam ( 5 )  has analogy with 
angular harmonics in the cavity [12]. Hence, the selected angular harmonics can serve 
as a source for forming the spiral autoguided beams considered here. 

3. Results of computer simulations 

The numerical solution of equation (1 1) with initial and boundary conditions (12) and 
(13) served as the basis for determining conditions under which the regime of 
autoguided spiral beam propagation is realised. The first necessary condition requires 
A > 0, i.e. it takes account of the saturation effect. The second necessary condition is 
the inequality f, > I ,  where I ,  is some critical parameter and f, is the energy localised 
in the beam. Note that f, = I ,  - Ir  where I ,  is the energy part which is released by the 
beam. This implies that during the beam evolution in the z coordinate a part of the 
initial energy f, is localised along the z axis, and a part of the energy I ,  is scattered 
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(radiated) in the radial direction. In the case of II < I , ,  a spread of the beam occurs. 
Note that I ,  is dependent on m and the scattered energy I ,  is dependent on the field 
profile on the medium boundary at z=O. It turned out that the ring-shaped field 
modulus distribution was necessary on the z = 0 boundary to give rise to the spiral 
autoguided regime. In this case, the nearer the field distribution on the z = 0 boundary 
to the autoguided solution, the smaller the energy I ,  released by the beam. Since at 
a sufficiently large z one may always introduce some boundary radius I?, separating 
the ‘solitary’ region of the beam from the scattered radiation, the energy f, localised 
in the beam may be defined as follows: 

fl = I,” Iu(r’, z’)12r’ dr’. (16) 

In view of the above remark on the necessity of considering a ring-shaped field modulus 
distribution, the initial conditions for the function U( r ’ ,  z‘)  at z‘= 0 were chosen as 
follows: 

u(r’, 0) = uo(r’) = g ( r ” / m 2 )  e ~ p [ - ( r ’ ~ / z m ~ ) ] .  (17) 
As a result of the numerical solution of equation (11) with boundary conditions (12) 
and (13), it has been found that for m = il the critical energy Z,-7.75, and for 
m = 1 2 ,  i 3, . . . , ( A  << l ) ,  the energy I ,  is approximately expressed by the formula 
Zc-71ml. It therefore became clear that the spiral autoguide always has a tube-like 
structure (a  ring-shaped intensity distribution at any fixed z ) .  This feature of the spiral 
autoguide has been theoretically predicted [7]. Another important result of the com- 
puter experiment is a discovered periodicity of the autoguided beam along the z axis 
[8,9]. The character of autoguide oscillations is essentially dependent on the quantity 
AII  = f, - I , .  With increasing A I l  the frequency and amplitude of field oscillations 
increase as well. In the case of A I I  >> I ,  a ‘failure’ arises when the periodicity is violated. 
Finally, the numerical calculations suggest the collapse regime at A = 0, the solution 
being self-similar in this case: 

/U(+, z’)l = ( z ~ - ~ ’ ) - ’ ” ~ ( ( z ~ - z ’ ) ~ ~ ~ ’ * r ’ ) ,  (18) 
We draw attention to the fact that during collapse evolution, when z’+zb (zh is the 
focusing point), max,. I u (  r’, z’)l+ a3 and the beam is compressed without limit but the 
tube-like structure remains (the field vanishes on the z axis). 

The above conclusions on the spatial spiral beam structure are confirmed by the 
results of computer experiments presented in figures 1-3. Figure 1 ( a )  illustrates the 
radial distribution of the field modulus at different values of z’. Figure l ( b )  demon- 
strates the periodicity of the autoguided solution in z‘. Within the oscillation period, 
the radial distribution of the amplitude modulus 1 U( r ‘ ,  z’)i has stages of spread and 
compression. In figure l ( a )  plots 1-3 represent the radial distribution of the field 
amplitude modulus in the spread stage. The reverse order of the succession of the 
plots of figure 1( a )  corresponds to the second part of the period, i.e. to the compression 
stage. The cases for other parameters of the problem ( m  = 2,3) are shown in figures 
2 and 3. Figure 4 represents the plot of the self-similar field amplitude distribution in 
the collapse regime ( A  =O). 

We now discuss the role of the second motion constant in forming a spiral autoguide. 
By analogy with i,, we define the quantity i2 as 
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Figure 1. The structure of the spiral autoguided beam with initial field modulus distribution 
of the type (20)  for m = l ,  g = Z f i ,  A =A. ( a )  The lateral distribution of iu(r',z')l at 
different fixed values of z'. (6 )  z' dependence of maximum field amplitude A(z ' )=  
max,,lu(r', z')l 

0 10 20 30 40 
2' 

Figure 2. Same as figure 1 but m = 2 .  
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Figure 3. Same as figure 1 but m = 3, g = 3. 

which is related to the localised part of the solution. Thus, the quantities f, and f2 
may be considered to be motion constants of the autoguide itself, the spatial spiral 
beam structure being largely dependent thereon. The computer experiment has shown 
that, in spite of the fact that I2  > 0 corresponds to the initial distribution (17), after 
the release of energy the autoguide is characterised by the quantity f2 < 0. Hence the 
motion constant I ,  plays a crucial role in forming the autoguided regime, since, as a 
result of scattering, the required condition f2<0 is automatically provided at a 
sufficiently large z'. The restriction imposed on I ,  follows from the inequalities f, > I , ,  
I ,  > 0 and has the form I ,  = fl + I,  > I , .  

The numerical results obtained allow the characteristic parameters of the spiral 
autoguide to be determined. In view of formulae (10) and (17) the field at the boundary 
of the medium ( z  = 0) may be expressed as 

' (r '  = &RoKom2 g (;)'..p[ -J-(J)']. 2m2 Ro 

Thus, although the parameter Ro was not specified earlier, it follows from (20)  that it 
yields a characteristic transverse dimension of the beam at the boundary of the medium. 
Hence, an arbitrarily chosen Ro is associated with an arbitrary given initial condition 
for equation (7). The second independent parameter determining the field strength at 
the boundary is g.  Further, for certainty, we take the following values: g =a, m = 2 
(figure 2 ) ,  e2 = lo-" C G S E  and K = lo5 cm-I, so that we choose the characteristic beam 
radius at z = 0 to be 0.1 cm in one case and 0.001 cm in the other. In consideration 
of the numerical results depicted in figure 2, the relations 

z = 2 KR:z' r = ROr' ' ( r ,  z) = u(r ' ,  Z') /&R,K~ 

are sufficient to find such parameters as the characteristic beam radii rmax and rmin 
corresponding to the maximum spread and maximum compression, respectively. Also, 
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these relations permit us to determine the period zo of autoguide oscillations and the 
maximum value of the field strength achieved at the points of maximum compression 
of the beam. 

In the case under consideration, at Ro = 0.1 cm, these parameters are of the order 
I,,, 0.3 cm, rmin = 0.07 cm, zo = 3 x lo4 cm, max,,  +( r, z )  = lo7 CGSE and, respectively, 
for R,, = lop3 cm, rmax = 3 x cm, rmin 2 7 x cm, zo = 3 cm, max,,  +( r, z )  = 
lo9 CGSE. Finally, we also evaluate the critical value of the energy integral which must 
be exceeded in order to realise the spiral autoguided regime. By definition 

and therefore, for m = 2, = lo-’’ CGSE and KO= lo5 cm-’ we find I,- 7 m l ~ , K i =  
1 . 4 ~  10” erg cm-I. 

Now, we discuss the appearance of oscillations in the spiral autoguide. The 
explanation appears to be associated with the fact that the last term in equation (10) 
may be ignored because A is infinitesimal in the initial stage (small z ) .  This leads to 
the evolution of the collapse. However, on compressing the beam and increasing the 
field strength, the non-linearity related to the saturation begins to take effect. Indeed, 
if the field strength is increased by an order of magnitude, the value of A I uI4u increases 
by a factor of lo5, and this term having the opposite sign begins to compete with the 
cubic non-linearity in (10). Further increases in z lead to the spread of the beam 
compressed in the initial stage of the evolution. As a result, the field intensity decreases, 
and the role of non-linearity of the fifth order of magnitude once again becomes 
negligible. The collapse stage then resumes. The oscillatory process is thus self- 
maintained. 

4. Two-dimensional collapse of spiral beams 

In the theory of non-linear wave processes the collapse plays the same fundamental 
role as solitons. There are several widely known examples of wave collapses as 
singularity formations for finite time. Some phenomena concerned are: the formation 
of discontinuities in gas dynamics, self-focusing of light beams in non-linear media, 
the collapse of plasma waves, etc. In particular, the problem of collapse was investi- 
gated [ 13-19]. Unlike the soliton regime, under collapse conditions the balance between 
dispersional (or diffractional) wave spread and the non-linear compression process is 
disturbed, so that the latter dominates. From the data of the computer experiment, 
there are two regimes in the case of spiral beam propagation described by equation 
(7): ( a )  either the spread of the beam for I ,  < I, or ( 6 )  the formation of the pulsing 
autoguide, the necessary condition for which is I, > I,. However, this occurs at E~ < 0 
only. In the case of c4 = 0 there takes place either the collapse when Z, > I;, or spread 
when ZI < I:. Note that for A << 1 we have I,= Zh. Thus, the collapse of spiral beams 
is governed by the equation 

where G = E ~ K ~ .  For m = 0 this equation describes ordinary self-focusing. 
Let us represent the function + ( r ,  z )  as 

+ ( r ,  11 = A(r,  2)  exp(i+(r, 2)) .  (23) 
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Equation ( 2 2 )  then reduces to a system of two equations for the real functions A ( r ,  z )  
and 4(r,  z ) :  

2 m z  = 24rAr + L4i-r + ( l / ’ r )4rIA 

(4 :  - 2 K 4 , ) A  = A,, + (1,’ r )  A, - (m’/ r 2 ) A  + GA3. 

( 2 4 )  

( 2 5 )  

Let the solution sought be of the form 

Our primary assumption is that the members containing F ( R )  and F ’ ( R )  are essentially 
different, and therefore they should be separately equated to each other in the left- 
and right-hand side of equation ( 2 7 ) .  Thus, we arrive at the system of equations 

K r f ( z )  - 4 r f ( z )  = 0 ( 2 8 )  

2 K g ’ ( z ) - [ 4 r , + ( l / r ) 4 , l g ( z )  = O  ( 2 9 )  

( 1 / K r ) 4 r  = 4 2 )  + ( r ,  z ) = & ~ c ( z ) r ’ + p ( z )  ( 3 0 )  

which is a particular case of ( 2 7 ) .  It follows from equation ( 2 8 )  that 

where c ( z )  and p ( z )  are some unknown functions. 
Substituting ( 3 0 )  into ( 2 8 )  and ( 2 9 )  we find 

f ’ ( z )  - c ( z ) f ( z )  = 0 g ’ ( z )  - c ( z ) g ( z )  = 0 ( 3 1 )  

whence f ( z )  = A g ( z ) .  Without loss of generality, one may set A = 1 and hence f ( z )  = 
g ( z ) .  Substituting the expression for phase ( 3 0 )  into ( 2 5 )  and taking account of 
f ( z )  = g ( z )  and R = r f ( z ) ,  we come to the equation which is basic for the subsequent 
analysis: 

K ’ ( C ~ ( Z )  - c ’ ( z ) ) ~ - ~ ( z ) R ’ F ( R )  - 2 K p ’ ( z ) f - ’ ( z ) F ( R )  

= F”(R)+ ( l / R ) F ’ ( R )  - ( m 2 / R ’ ) F ( R )  + GF3(R).  

Let us consider two different cases which are determined by equation (32) .  In the 
first case we set 

c’( z )  - c2( z )  = 0 

2 K p ’ ( z )  + p f ’ ( z )  = 0 

and then from equations ( 3 1 )  and ( 3 3 )  we find 

( 3 3 )  

( 3 4 )  

Here zo and b are integration constants. Now, solving equation ( 3 4 ) ,  we determine p(z) :  
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In view of (26 ) ,  (30) ,  (32 )  (35 )  and (36 ) ,  we arrive at the first self-similar case: 

where F ( R )  

Here m = 0, 

A ( r , z ) = - F ( L )  b 
( z o - z )  zo-z 

K’r’ - b2c2 
2 K  ( ZO - Z )  

4 ( r ,  2 )  = 4 0 +  

(37 )  

satisfies the following equation and boundary conditions: 

F”( R )  + ( 1 / R )  F’( R )  - [ (m’/ R’) + 5’1 F (  R )  + GF3( R )  = 0 (39 )  

lim F (  R )  = 0 F ( R ) > O .  ( 4 0 a )  
R + m  

lim F’(,R) = 0 

*2, *3, . , , . Since the function F ( R )  has asymptotics F ( R )  - RI”’ as 

R+O 

R + 0, the required boundary condition for equation (39)  at m-= * 1  is 

lim F ( R )  = 0 lim F ( R )  = 0 F ( R ) Z O .  (40b)  
R-0 R+,X 

The case where b > 0, z < zo corresponds to the collapse. Another (damped) solution 
is obtained if b < 0, z > zo. 

Now let us proceed to the consideration of the second case. From the analysis of 
equation (32 )  it follows that the conditions to be satisfied are 

c ’ ( z ) - c ’ ( z ) = ( ~ / ~ ~ ’ ) ~ ~ ( z )  (41 )  
2Kcp’(z) + S’f ’ ( z )  = 0. (42 )  

The solution of the system of equations (31 )  and (41)  is 

where zo and b are integration constants. Solving (42 ) ,  taking account of (43 ) ,  we 
determine cp (2): 

4o = constant. (44 )  

Therefore, taking account of (26 ) ,  (30) ,  (32 ) ,  (43 )  and (44)  we arrive at the second 
self-similar case: 

A(r, z )  =(L)”2F(  zo-z ( L ) ’ 1 2 r )  zo - z 

Kr2  bl’ z o - z  4(r,  z )  = 40+- +-ln - 
4 ( z o - z )  2K  I b 1 ’  

(45 )  

Here, in accordance with (32) ,  the function F ( R )  satisfies the following equation and 
boundary conditions for m = 0, * 2 ,  13, . . . : 

(47 )  F ” ( R )  + ( l / R ) F ’ ( R )  - [ ( m 2 / R 2 ) +  5’- ( K 2 / 4 b ’ ) R ’ ] F ( R )  + G F 3 ( R )  = 0 

lim F ‘ ( R )  = 0 lim F ( R )  = 0 F ( R ) > O .  ( 4 8 a )  
R -0 R-LX 

For m = +1, the boundary condition may be written as 

lim F ( R )  = 0 lim F ( R )  = 0 F ( R ) 3 O .  
R-0 R - a ;  
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The case where b > 0, z < zo corresponds to the collapse. Given b < 0, z < zo corresponds 
to the collapse. Given b <0, z >  zo in (45) and (46), we obtain a damping solution. 

In the first self-similar solution (37)  and (38) and in the second one (45) and (46) 
zo is a focusing point, where the field has a singularity. Since two different solutions 
are obtained here, it is worthwhile to ascertain which of the two solutions is stable 
and, hence, physically meaningful. To achieve this aim, use was made of computer 
simulation. It was found out that as z +  zo the numerical solution of equation (22) is 
consistent with the self-similar solution (45) and (46) to high accuracy. Initially, (45) 
was checked and the constants zo and b were determined. Note that a numerical 
solution was sought for the dimensionless equation and, therefore, to compare with 
analytical results we set K = f, G = 1, Q = u(r, z) in all the formulae of this section. 
To confirm the parabolic phase dependence on r, the function u(r, z )  was calculated 
and then the following quantity was evaluated: 

Here r and z are dimensionless variables (primes are dropped). In figure 4 the results 
of the computer simulation are presented for uo(r) = (J8r2/m2) exp(-r2/2m2) with 
m = 2. From (46), 6 =a, which is completely consistent with the computer calculation. 
For the case under consideration zo = 5.925 52, b = 9.634 42. The profile depicted in 
figure 4 remains practically invariable at z 2 5.8 (the computer test has been carried 
out up to z = 5.9255). To exhaustively check expression (46), we calculated the second 
quantity 

which also proved to be independent of r and z at z 3 5.8. It follows from (46) that 
U =  b<*=constant. On the other hand, from the computer experimental data and 
formula (50), it was found that U = 3.64. Therefore, the parameter l2  determining the 
function F ( R ) ,  in accordance with equation (47), has a value of about 0.378 in the 
case of figure 4. 

R 

Figure 4. The self-similar structure of the collapsing spiral beam for m = 2, G = 1, K = f. 
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In conclusion we note that the self-similar solution for m = 0 has been obtained 
[19]. A more general solution, which is valid for any m, has been found by the above 
method in [9]. 

5. Three-dimensional spherically symmetric collapse 

As a further development of the collapse theory using the approach presented here, 
it is noteworthy to consider a three-dimensional case which is claiming the attention 
of many researchers [20 ] .  For the sake of generality, we consider a three-dimensional 
collapse described by a Scrodinger-type equation with a non-linearity of the arbitrary 
power and an explicit dependence on the radius. Thus, consider the following non- 
linear equation of a more general type: 

where n and s are arbitrary parameters. We express the complex function +(r ,  t )  as 

+ ( r ,  t )  = A(r ,  t )  exp(i4(r, t ) )  ( 5 2 )  
and then from (51), allowing for ( 5 2 ) ,  we arrive at the system of equations for the real 
functions A(r,  t )  and 4(r ,  t ) :  

Ar =24rAr + [ 4 r r  + ( 2 / ? ) 4 r I A  (53) 

(4 : -  + r ) A = A , , + ( 2 / r ) A r +  Gr”AS+’. (54) 

A(r,  t )  = a ( t ) Q ( P ( t ) r )  = a ( t ) Q ( R )  R = P ( t ) r .  ( 5 5 )  

(56)  

As in P 4 let the solution for the amplitude be of the form 

Then equation (53) reduces to 

a ’( t )  Q ( R  1 + a ( t ) P  ’( t )  rQ’( R 1 = 24ra ( t ) P  ( t ) Q’( RI + [ 4r r  + (2 /  r )  4 r I  a ( t )  Q ( R  ) *  

Pushing the analogy further, let us seek a particular solution of equation (56) which 
satisfies the system 

. ’ ( t ) - [ ~ r r + ( 2 / r ) 4 , l a ( t )  = o  (57) 

P ’ ( t )  - ( 2 /  r ) 4 r P ( t )  = O *  ( 5 8 )  

The system represented by (57)  and (58) follows from (56) if one equates terms 
containing Q ( R )  and Q’(R) in the left- and right-hand sides of (56) separately. From 
(58) we find 

( 2 / r ) 4 r  = ~ ( t )  4(  r, t )  =by(  t ) r 2 +  A (  t )  ( 5 9 )  
where y ( t )  and A (  t )  are some functions of time. Substituting (59) into ( 5 7 )  and (58) 
we arrive at the equations 

a’( t )  - $ y ( t ) a ( t )  = 0 (60) 

P ’ ( t ) - r ( t ) P ( t ) = O .  (61) 

On the other hand, substituting ( 5 5 )  and (59) into (54) we obtain a basic equation for 
further analysis: 

a( r2( t )  - Y’( t ) ) P  -4( t )  R2Q( R 1 - A ’( t ) P  -*( t )  Q( R )  
= Q”(R) + ( 2 / R ) Q ’ ( R )  + Gr”a”(  t)p-2( t ) Q ” ” ( R ) .  (62) 
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A self-similar solution is readily seen to exist in the case where the last term in (62) 
depends only on R. Hence, we find r"aSP- '=  R" = rnpn  and 

a ( t )  = p ( t ) ( n + 2 ) ' s .  (63) 

Substituting (63) into (60) leads to the equation 

Comparing (61) with (64) we come to the relationship between indices n and s: 

s = 3 ( n + 2 )  (65) 

which provides the existence of the self-similar solution. So, on the basis of (63) and 
(65) we obtain 

a ( t )  = p3'7 t ) .  (66) 

Further, we consider two different cases which follow from (62). In the first case we 
impose the conditions 

y'(  t )  - y2( t )  = 0 

A'(  t )  + €'p'( t )  = 0. 

(67) 

(68) 

Solving equations (67) and  (60) in view of (66), we find 

(69) 

where to and a are integration constants. Taking account of (69), from (68) we obtain 

t 2 U 2  
A ( t )  = 40-- Qo = constant. (70) 

to - t 

Hence, from (55), (59), (69) and (70) we find the first self-similar solution: 

where, in accordance with (62), the function Q ( R )  satisfies the following equation 
and boundary conditions: 

Q"(R) + (2/R)Q'(  R )  - t 2 Q ( R ) +  GRnQ(R)(2n+7)'3 = 0 (73) 

lim Q'( R )  = 0 lim Q(R)=O Q ( R ) 3 O .  (74) 
R-tO R-ZC 

For a > 0, t < to the solutions (71) and (72) describe a collapse, and for a < 0, t > to 
the solution becomes damped. The second self-similar solution is obtained when, 
according to (62), we require the following conditions to be satisfied: 

(75) 

(76) 

y ' ( t )  - y 2 ( t )  = (1/4a2)P"t) 
A ' (  t )  + t 'p2(  t )  = 0. 
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Solving equations (61), (65) and (75) yields 

In view of (77), solving (76), we find 

A ( t ) = 4 0 + a t 2 h  - I t l  4o = constant. 

So, taking into account ( 5 5 ) ,  (59), (77) and (78) we obtain the second self-similar 
solution: 

Here, in accordance with (62), the equation for the function Q ( R )  and the relevant 
boundary equations are, respectively, 

Q”( R )  + (2/ R )  Q’( R )  - ( t2 - R2/ 16a2) Q( R )  + GRnQ(2n+7) /3  (R)=O (81) 

R+O lim Q’(R)  = 0 R-ca lim Q(R)=O Q(R)>O. (82) 

Again, when a > 0, t < to the solution (79) and (80) describes a collapse, and when 
a < 0, t > to the solution has a damped character. Note that for n = 1, according to 
( 6 5 ) ,  s = 2 and the non-linear term of equation (51) has the form Grl+/*+.  For n = 0, 
we obtain s = $, and the non-linear term may be written as GI+14”+. The same question 
arises as before (see § 4): which of the two solutions (71), (72) and (79), (80) has a 
physical meaning? An appropriate analysis and numerical calculation show solution 
(79)-(82) to be stable. 

Thus we have obtained a new class of self-similar solutions which depend on n. 
In our opinion, among these the case where n = 1 seems to be closest to real physical 
situations which take place, for example, in non-uniform media. 

6. Conclusion 

The results of the numerical simulations have shown that spiral autoguided beams are 
periodic along the z axis and solitary in the lateral direction waves. In this respect, 
they resemble cnoidal and soliton solutions in the theory of exactly integrable non-linear 
equations. However, it is noteworthy that both these essentially different dependencies 
on z and r are combined in the spiral autoguide. It is also shown that for m # 0 the 
radial distribution of radiation intensity always has a tubular structure. One can strictly 
prove that the field vanishes on the axis for any z a O  and m Z O  if, at the ( z = O )  
boundary, the field modulus has an annular distribution and Eolr=o = 0. 

A qualitative difference of this theory from the theory previously developed [ 10, 111 
is that, because of a spatial phase modulation, there is no diffractional spread here. 
In particular, it is indicated in 0 3 that the integral f 2  determined by (19) becomes 
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negative for sufficiently large values of z, and consequently the necessary condition is 
met for the autoguided propagation of spiral beams. 

It seems of interest to pay attention to the relation between the results obtained 
and the theory of self-organising systems. Indeed, analysing the properties of uniform 
open non-linear systems with time-independent non-equilibrium boundary conditions 
imposed on them, Glansdorff and Prigogine [21] proved the following statement: 
stationary states of such systems, which belong to the finite vicinity of the thermo- 
dynamic equilibrium state, are asymptotically stable and tend to it monotonically in 
time. If the distance from equilibrium exceeds some critical value, then the stationary 
state can become unstable. Thus the Glansdorff and Prigogine theorem is applicable 
to our case, with the z variable playing the role of time and the pumped power, 11, 
being a bifurcation parameter. When I l < I c  the solutions of equation (7 )  tend 
monotonically to equilibrium (zero) solutions at z + CO. The thermodynamic threshold 
of self-organisation is achieved when the power exceeds some critical value ( Il > I , )  
and the system dynamics in the z variable is determined by the non-linearities available 
in the system. So, in the case of the cubic non-linearity ( E ~ > O ,  c 4 =  0) the stationary 
state is unstable at Il > I: and the system changes over to the regime of collapse. When 
the non-linearity of the fifth order (eZ> 0, e4<0) is considered, the system is shown 
to change to a new stationary state at Il > I,. This is an autoguided propagation with 
the z periodicity. Thus, at the bifurcation point (Il = I,) a dissipative structure arises. 

We note that the possibility of the practical use of tubular beams for transmitting 
information and energy by means of other types of radiation has long been attracting 
the attention of researchers. In these applications spiral beams have undoubted 
advantages because of the absence of diffractional divergence. 

The spherical collapse is also of great practical interest, offering the possibility of 
pumping powerful radiation into small volumes. Such three-dimensional collapse can 
be realised when self-focusing of the convergent spherical wave of radiation takes 
place in a droplet-like target with a linear dependence of e2 on the radial coordinate. 
The target prepared in such a way ensures the stability of the collapse. In addition, 
this case is remarkable for the fact that it is analytically tractable. A more detailed 
description should also include the non-local effect of thermal self-action. Nevertheless, 
the local approach we have used, which is typical in the self-focusing theory, develops 
a proper qualitative pattern of the phenomena discussed. Finally, we note that there 
is a stable solution of equation (4) which describes the two-wave interaction of spiral 
beams with different topological charges m, and m,, provided that the polarisation 
vectors of these waves are orthogonal. In this case, the field intensity radial distribution 
has a more complicated nature. In particular it may have several maxima. 

We hope that the results obtained are sufficiently encouraging to stimulate experi- 
mental investigations in this field. 
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